Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 143(10): 2911-2928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103737

RESUMO

Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.


Assuntos
Cílios/genética , Complexo de Golgi/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Animais , Células Cultivadas , Cílios/patologia , Feminino , Complexo de Golgi/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/diagnóstico por imagem
2.
Sci Rep ; 9(1): 6311, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004120

RESUMO

Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.


Assuntos
Fluoxetina/farmacologia , Hipocampo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução de Sinais/genética
3.
J Neurosci ; 36(5): 1456-70, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843630

RESUMO

The 5-HT3 receptors are serotonin-gated ion channels that physically couple with purinergic P2X2 receptors to trigger a functional cross-inhibition leading to reciprocal channel occlusion. Although this functional receptor-receptor coupling seems to serve a modulatory role on both channels, this might not be its main physiological purpose. Using primary cultures of rat hippocampal neurons as a quantitative model of polarized targeting, we show here a novel function for this interaction. In this model, 5-HT3A receptors did not exhibit by themselves the capability of distal targeting in dendrites and axons but required the presence of P2X2R for their proper subcellular localization. 5-HT3AR distal targeting occurred with a delayed time course and exhibited a neuron phenotype dependency. In the subpopulation of neurons expressing endogenous P2X2R, 5-HT3AR distal neuritic localization correlated with P2X2R expression and could be selectively inhibited by P2X2R RNA interference. Cotransfection of both receptors revealed a specific colocalization, cotrafficking in common surface clusters, and the axonal rerouting of 5-HT3AR. The physical association between the two receptors was dependent on the second intracellular loop of the 5-HT3A subunit, but not on the P2X2R C-terminal tail that triggers the functional cross-inhibition with the 5-HT3AR. Together, these data establish that 5-HT3AR distal targeting in axons and dendrites primarily depends on P2X2R expression. Because several P2XR have now been shown to functionally interact with several other members of the 4-TMD family of receptor channels, we propose to reconsider the real functional role for this receptor family, as trafficking partner proteins dynamically involved in other receptors targeting. SIGNIFICANCE STATEMENT: So far, receptor targeting mechanisms were found to involve intracellular partner proteins or supramolecular complexes that couple receptors to cytoskeletal elements and recruit them into cargo vesicles. In this paper, we describe a new trafficking mechanism for the neuronal serotonin 5-HT3A ionotropic channel receptor, in which the role of routing partner is endowed by a functionally interacting purinergic receptor: the P2X2 receptor. This work not only unveils the mechanism by which 5-HT3 receptors can reach their axonal localization required for the control of neurotransmitter release, but also suggests that, in addition to their modulatory role, the family of P2X receptors could have a previously undescribed functional role of trafficking partner proteins dynamically involved in the targeting of other receptors.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Camundongos , Neurônios/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2/química , Receptores 5-HT3 de Serotonina/química , Xenopus laevis
4.
J Pineal Res ; 60(1): 95-108, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514267

RESUMO

In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein-coupled receptor (GPCR) super-family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1 , but not with MT2 , we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage-gated calcium channel Cav 2.2 and inhibits Cav 2.2-promoted Ca(2+) entry in an agonist-independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav 2.2 activity, providing a first hint for potential synaptic functions of MT1.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio Tipo N/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptor MT1 de Melatonina/metabolismo , Canais de Cálcio Tipo N/genética , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Receptor MT1 de Melatonina/genética
5.
Traffic ; 16(9): 978-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077767

RESUMO

Yif1B is an intracellular membrane-bound protein belonging to the Yip family, shown previously to control serotonin 5-HT1A receptor targeting to dendrites. Because some Yip proteins are involved in the intracellular traffic between the ER and the Golgi, here we investigated the precise localization of Yif1B in HeLa cells. We found that Yif1B is not resident into the Golgi, but rather belongs to the IC compartment. After analyzing the role of Yif1B in protein transport, we showed that the traffic of the VSVG protein marker was accelerated in Yif1B depleted HeLa cells, as well as in hippocampal neurons from Yif1B KO mice. Conversely, Yif1B depletion in HeLa cells did not change the retrograde traffic of ShTx. Interestingly, in long term depletion of Yif1B as in Yif1B KO mice, we observed a disorganized Golgi architecture in CA1 pyramidal hippocampal neurons, which was confirmed by electron microscopy. However, because short term depletion of Yif1B did not change Golgi structure, it is likely that the implication of Yif1B in anterograde traffic does not rely on its role in structural organization of the Golgi apparatus, but rather on its shuttling between the ER, the IC and the Golgi compartments.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/ultraestrutura , Transporte Proteico , Ratos , Proteínas de Transporte Vesicular/genética
6.
Prog Mol Biol Transl Sci ; 132: 97-126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26055056

RESUMO

Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.


Assuntos
Membrana Celular/metabolismo , Receptores de Serotonina/metabolismo , Animais , Células CHO , Caveolinas/metabolismo , Sistema Nervoso Central/embriologia , Cricetulus , Cisteína/química , Endocitose , Células HEK293 , Hipocampo/metabolismo , Humanos , Ligantes , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Transfecção
7.
J Neurosci ; 34(1): 282-94, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381289

RESUMO

Selective serotonin reuptake inhibitors (SSRI) are aimed at increasing brain 5-HT tone; however, this expected effect has a slow onset after starting SSRI treatment because of initial activation of 5-HT(1A) autoreceptor-mediated negative feedback of 5-HT release. After chronic SSRI treatment, 5-HT(1A) autoreceptors desensitize, which allows 5-HT tone elevation. Because 5-HT(1A) receptor (5-HT(1A)R) internalization has been proposed as a possible mechanism underlying 5-HT(1A) autoreceptor desensitization, we examined whether this receptor could internalize under well controlled in vitro conditions in the LLC-CPK1 cell line and in raphe or hippocampal neurons from rat embryos. To this goal, cells were transfected with recombinant lentiviral vectors encoding N-terminal tagged 5-HT(1A)R, and exposed to various pharmacological conditions. Constitutive endocytosis and plasma membrane recycling of tagged-5-HT(1A)R was observed in LLC-PK1 cells as well as in neurons. Acute exposure (for 1 h) to the full 5-HT(1A)R agonists, 5-HT and 5-carboxamido-tryptamine, but not the partial agonist 8-OH-DPAT, triggered internalization of tagged 5-HT(1A)R in serotonergic neurons only. In contrast, sustained exposure (for 24 h) to all agonists induced tagged-5-HT(1A)R endocytosis in raphe serotonergic neurons and a portion of hippocampal neurons, but not LLC-PK1 cells and partial agonist displayed an effect only in serotonergic neurons. In all cases, agonist-induced tagged 5-HT(1A)R endocytosis was prevented by the 5-HT(1A)R antagonist, WAY-100635, which was inactive on its own. These data showed that agonist-induced 5-HT(1A)R internalization does exist in neurons and depends on agonist efficacy and neuronal phenotype. Its differential occurrence in serotonergic neurons supports the idea that 5-HT(1A)R internalization might underlie 5-HT(1A) autoreceptor desensitization under SSRI antidepressant therapy.


Assuntos
Autorreceptores/agonistas , Autorreceptores/metabolismo , Neurônios/metabolismo , Fenótipo , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Animais , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Feminino , Células LLC-PK1 , Neurônios/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Suínos
8.
J Neurosci ; 32(41): 14227-41, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055492

RESUMO

Although essential for their neuronal function, the molecular mechanisms underlying the dendritic targeting of serotonin G-protein-coupled receptors are poorly understood. Here, we characterized a Yif1B-dependent vesicular scaffolding complex mediating the intracellular traffic of the rat 5-HT(1A) receptor (5-HT(1A)R) toward dendrites. By combining directed mutagenesis, GST-pull down, and surface plasmon resonance, we identified a tribasic motif in the C-tail of the 5-HT(1A)R on which Yif1B binds directly with high affinity (K(D) ≈ 37 nM). Moreover, we identified Yip1A, Rab6, and Kif5B as new partners of the 5-HT(1A)R/Yif1B complex, and showed that their expression in neurons is also crucial for the dendritic targeting of the 5-HT(1A)R. Live videomicroscopy revealed that 5-HT(1A)R, Yif1B, Yip1A, and Rab6 traffic in vesicles exiting the soma toward the dendritic tree, and also exhibit bidirectional motions, sustaining their role in 5-HT(1A)R dendritic targeting. Hence, we propose a new trafficking pathway model in which Yif1B is the scaffold protein recruiting the 5-HT(1A)R in a complex including Yip1A and Rab6, with Kif5B and dynein as two opposite molecular motors coordinating the traffic of vesicles along dendritic microtubules. This targeting pathway opens new insights for G-protein-coupled receptors trafficking in neurons.


Assuntos
Dendritos/fisiologia , Regiões de Interação com a Matriz/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Células Cultivadas , Dendritos/genética , Marcação de Genes/métodos , Humanos , Regiões de Interação com a Matriz/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vesículas Sinápticas/genética , Proteínas de Transporte Vesicular/genética
9.
J Neurosci ; 28(32): 8063-73, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18685031

RESUMO

The 5-HT(1A) receptor (5-HT(1A)R) is the most extensively characterized serotonin (5-HT) receptor mainly because of its involvement in the mode of action of antidepressants. The 5-HT(1A)R is confined to the somatodendritic domain of central neurons, where it mediates serotonin-evoked hyperpolarization. Our previous studies underlined the role of the short 5-HT(1A)R C-terminal domain in receptor targeting to dendrites. We used this 17 aa region as bait in a yeast two-hybrid screen, and identified, for the first time, an intracellular protein interacting with the 5-HT(1A)R. This protein is homologous to the yeast Yif1p, previously implicated in vesicular trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus, but not yet characterized in mammals. We confirmed 5-HT(1A)R-Yif1B interaction by glutathione S-transferase pull-down experiments using rat brain extracts and transfected cell lines. Yif1B is highly expressed in the brain, and specifically in raphe 5-HT(1A)R-expressing neurons. Colocalization of Yif1B and 5-HT(1A)R was observed in small vesicles involved in transient intracellular trafficking. Last, inhibition of endogenous expression of Yif1B in primary neuron cultures by small interfering RNA specifically prevented the addressing of 5-HT(1A)R to distal portions of the dendrites, without affecting other receptors, such as sst2A, P2X(2), and 5-HT(3A) receptors. Together, our results provide strong evidence that Yif1B is a member of the ER/Golgi trafficking machinery, which plays a key role in specific targeting of 5-HT(1A)R to the neuronal dendrites. This finding opens up new pathways for the study of 5-HT(1A)R regulation by partner proteins and for the development of novel antidepressant drugs.


Assuntos
Dendritos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Glutationa Transferase/metabolismo , Células LLC-PK1 , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Suínos , Distribuição Tecidual , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...